Aesculap® Metal Allergy

Allergy Diagnosis – Procedure – Implant Materials
It has been discovered that a possible contact allergy to implant materials or the components contained in bone cement may lead to implant intolerance. Endoprostheses are known to release metal ions into the human body. This can lead to immune reactions in patients who are at risk of allergy. Symptoms that have been described include eczema, impaired wound healing, bruising, pain, restricted movement and loosening of the implant. The most common allergenic metals are nickel, cobalt and chromium. People have also been known to exhibit sensitivities to certain components of cement, such as acrylate and gentamicin.

With between 10% and 15% of the population allergic to metals, it would appear that such sensitivities are relatively high; however, the number of metal allergy sufferers to develop an intolerance to implant materials following endoprosthetic implantation has not yet been conclusively proven.

Incidence of skin reactions to metals
- General population: 10%
- Patients with a well functioning prosthesis: 25%
- Patients with a loose prosthesis or pain: 60%

Contact allergy after endoprosthesis
239 patients experiencing implant complications, 181 of whom with knee or hip endoprostheses, underwent contact allergy investigation.3
- Nickel allergy: 21.3%
- Cobalt allergy: 10.9%
- Chromium allergy: 5.0%
- Allergic reaction to components contained in bone cement: 24.8%

The criteria for diagnosing a metal implant allergy have not yet been defined conclusively, such that differential diagnoses (infection) have to be excluded and several test methods have to be considered at the same time.

The standard allergological diagnosis should include an **epicutaneous test**, if possible with **histological evaluation** of the tissue surrounding the implant. Additional information can be provided by the **lymphocyte transformation test (LTT)**.

The Implant Allergy Working Group of the DGOOC (German Association of Orthopaedics and Orthopaedic Surgery) came up with an allergological procedure for clarifying a suspected metal allergy, as described below.

Allergies associated with implants are generally of type IV hypersensitivity (Gell and Coombs classification): A T-cell-mediated, delayed type hypersensitivity (DTH).
Lymphocyte transformation test (LTT)

The LTT shows, by means of inducible T-cell proliferation following the in-vitro addition of antigens, that the donor’s blood lymphocytes ‘recognise’ the antigen added to the cell culture (sensitization). This figure is shown in comparison to the negative control of unstimulated cultures in a ratio, which is referred to as the stimulation index (SI). An SI>2 indicates sensitivity.

The test can show whether a patient is sensitive to metals\(^5\); however, a sensitivity does not necessarily mean an allergy.

Epicutaneous testing

Test metals are administered to the skin and the results read after 2, 3 and in some cases 7 days. Suspect metals (nickel, chromium and cobalt) are tested in a standard series of tests. Components of bone cement should also be tested if cement was used to attach the implant.

The test compounds are standardized to detect a contact allergy; to nickel, for instance. However, the results may be affected by altered immune reactions or immunotolerance. Although the test is conducted on the skin and therefore only has limited applicability to subcutaneous tissue, the results are at least able to identify allergy sufferers. More detailed exploration would then be required for clinical relevance.

Patch testing using metal discs is no longer recommended for the following reasons\(^5\):

- Because it is not standardized, false-negative or false-positive reactions may arise and it is unclear which metal the individual is reacting to.
- The test discs can rub and press down on the skin, causing skin irritation that leads to false-positive results.

In view of the above, B. Braun Aesculap no longer offers patch test discs.

Histological evaluation

Periimplantary tissue collected arthroscopically from total knee replacement patients should be fixed in formalin and subjected to further immunohistological investigation for inflammatory cell infiltration, foreign body reaction or infection-associated changes.\(^6\) In the specific case of loosening of the endoprosthesis, the following consensus classification is described for (immune) histological testing of tissue.\(^6\)

- **Type I (wear particle induced)** refers to an infiltration consisting predominantly of macrophages and multinucleated giant cells.
- **Type II (infectious)** may indicate a pronounced or minimal infection with chronic granulomatous inflammation.
- **Type III (combined)** is a combination of both wear particle induced and infections.
- **Type IV (indeterminate)** refers to a clinical picture with fewer cells, but high collagen fibre.

Lymphocyte transformation test (LTT)

The LTT shows, by means of inducible T-cell proliferation following the in-vitro addition of antigens, that the donor’s blood lymphocytes ‘recognise’ the antigen added to the cell culture (sensitization). This figure is shown in comparison to the negative control of unstimulated cultures in a ratio, which is referred to as the stimulation index (SI). An SI>2 indicates sensitivity.

The test can show whether a patient is sensitive to metals\(^5\); however, a sensitivity does not necessarily mean an allergy.
Metal Allergy Investigation Procedure

Suspected implant allergy (after excluding infection)

Medical history and findings

Associated local skin appearance

Yes

Differential diagnosis
Mycology, bacteriology, take sample if nec.

Yes

Other disease
(e.g. tinea, stasis dermatitis)
-> change treatment accordingly

No

Epicutaneous testing
Standard, implant metals, bone cement components

Periimplantary tissue sample, histology, immunohistology

Suspected hypersensitivity (allergy)

No hypersensitivity

Reaction to materials not associated with the implant?

Reaction to implant components?

Evaluation of medical history, clinical picture and test results combined

LTT

Effectiveness not yet fully evaluated

Suspected implant allergy (after excluding infection)

Yes Yes

No No

Suspected hypersensitivity (allergy)

No hypersensitivity

Other disease
-> change treatment accordingly

Chart: Metal allergy investigation procedure as defined by the Implant Allergy Working Group

* LTT as a further scientific approach (effectiveness still under evaluation)
Aesculap Implant Materials

<table>
<thead>
<tr>
<th>Materials</th>
<th>ISO standard</th>
<th>IsoDur C</th>
<th>ISOTAN F</th>
<th>Plasmapore coating/ ISOTAN F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy base</td>
<td>Cobalt</td>
<td>Cobalt</td>
<td>Titanium</td>
<td>Titanium</td>
</tr>
<tr>
<td>Alloy type</td>
<td>CoCrMo</td>
<td>CoCrMo</td>
<td>Ti6Al4V</td>
<td>Ti</td>
</tr>
<tr>
<td>Carbon (≤ 0.35)</td>
<td>≤ 0.35</td>
<td>≤ 0.35</td>
<td>≤ 0.08</td>
<td>≤ 0.10</td>
</tr>
<tr>
<td>Silicium (≤ 1.0)</td>
<td>≤ 1.0</td>
<td>≤ 1.0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Manganese (≤ 1.0)</td>
<td>≤ 1.0</td>
<td>≤ 1.0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cobalt (Residual)</td>
<td>Residual</td>
<td>Residual</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Chromium (26.0 - 30.0)</td>
<td>26.5 - 30.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Molybdenum (5.0 - 7.0)</td>
<td>4.5 - 7.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nickel (≤ 1.0)</td>
<td>≤ 1.0</td>
<td>≤ 1.0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Vanadium (–)</td>
<td>–</td>
<td>–</td>
<td>3.5 - 4.5</td>
<td>–</td>
</tr>
<tr>
<td>Aluminum (–)</td>
<td>–</td>
<td>–</td>
<td>5.5 - 6.7</td>
<td>–</td>
</tr>
<tr>
<td>Iron (≤ 0.75)</td>
<td>≤ 1.0</td>
<td>≤ 1.0</td>
<td>≤ 0.3</td>
<td>≤ 0.3</td>
</tr>
<tr>
<td>Titanium (–)</td>
<td>–</td>
<td>–</td>
<td>Residual</td>
<td>Residual</td>
</tr>
<tr>
<td>Nitrogen (≤ 0.25)</td>
<td>≤ 0.25</td>
<td>–</td>
<td>≤ 0.05</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Oxygen (–)</td>
<td>–</td>
<td>–</td>
<td>≤ 0.2</td>
<td>≤ 0.45</td>
</tr>
<tr>
<td>Hydrogen (–)</td>
<td>–</td>
<td>–</td>
<td>≤ 0.015</td>
<td>≤ 0.0125</td>
</tr>
</tbody>
</table>

Table: Constituent substances of alloys used in implant components

AS Coating
- Multilayer ceramic coating made from zirconium and various intermediate layers (ZrN-CrN-CrCN-Cr)
- Knee implants: AS Columbus, AS e.motion, AS e.motion PS Revision, AS Vega
- Special patient-specific knee implants: univation, Columbus Revision, EnduRo, cementless implants

ISODur C
- Knee implants: Extension stems, obturator, augmentation, tibia univation
- Hip implants: Metal heads, Metha modular necks, cemented stems

ISOTAN F
- Knee implants: Columbus, e.motion, Vega, femur univation, EnduRo, Search
- Hip implants: Cementless stems, Plasmacup, Screw socket SC

Plasmapore coating
- Hip implants: Bicontact, Excia, Plasmacup
- Cementless knee implants: Columbus, e.motion

Plasmapore μ-CaP coating
- Hip implants: Metha, Excia, Prevision
- Knee implants: e.motion

Literature

For more information about Aesculap knee systems: www.asimplants.com
